ROOTT
open implant system

by TRATE

System overview
“The only one-piece implant with no organic contaminants or inorganic residues.”

"Quality assessment of dental implants by SEM and EDX analysis. A comparison of five one-piece implants"
Dr. Dirk U. Duddeck, CleanImplant Foundation.

High quality and safety standards

We operate a quality management system based on EN ISO 13485:2016. The company’s products are certified in compliance with the provisions of European Directive 93/42/EEC.
Created for dentists by dentists

The ROOTT Implant System is developed and constantly upgrading by TRATE AG in close cooperation with members of Open Dental Community.

The ROOTTCONCEPT has dispensed with the overcomplicated treatment procedures recommended by implant manufacturers who are limited by their products on the market.

The ROOTT philosophy is to create the ideal artificial tooth which organically integrates with existing biological structures in the simplest way.

Innovations and development

The system development aims to reflect the collective view of independent dental practitioners throughout the world thus TRATE AG closely cooperate with the Open Dental Community NPO (Luxembourg). This approach avoids reliance on individual opinions and makes dentists free to select the method most suited to the patient.
COMPRESSIVE implants

The COMPRESSIVE implant is a one-piece implant with compressive threads. It is used for multiple unit restorations with immediate loading in the upper and lower jaws with adequate bone tissue. It can be used in combination with basal implants and allows flap and flapless placement. Abutment direction can be adjusted up to 15° relative to the implant axis.

- Special compressive threads
- Immediate loading
- Adjustable abutment slope angle
- In accordance with FILO concept can be combined with Basal implants in pterygoid area for total rehabilitation

“The FILO Concept is based in three principles: Flapless surgery, Immediate Loading, and use of one-piece implants. Compressive is a multi-purpose implant and Basal is reserved to Pterygoid Area when it is necessary.”

Clinical case

Dr. Alvaro Bastida
Spain

More clinical cases at Open Dental Community Group on Facebook
Wide range of sizes
From short and wide to thin and long

Bendable neck
Depending on the length of the implant the abutment can be bent up to 15 degrees, as long as the implant is placed with high primary stability

Variety of prosthetic solutions
From cemented fixation and burn-out angulated caps to telescopic caps with screwed retention and CAD-CAM solutions on multiunit platforms.

Universal set
Tooth socket preparation with bone volume saving drills and Compressive Screws allows to match your sterile implant perfectly.
Compressive implants

\[\varnothing_{2.3} \]

\[\varnothing_{3.5} \]

\[\varnothing_{n} \]

\[\varnothing_{o} \]

\[\varnothing_{oi} \]

\[\varnothing_{i} \]

\[\varnothing_{ii} \]

\[\varnothing_{a} \]

\[\varnothing_{ai} \]

\[\alpha \]

\[L \]

\(o \) - occlusal diameter (mm); \(i \) - intraosseous diameter (mm); \(a \) - apical diameter (mm); \(n \) - neck diameter; \(\alpha \) - total internal angle (°); \(s \) - intraosseous square area (mm\(^2\)); \(i \) - internal.
Compressive implants with short neck

Bendable Gingiva H<1 mm Sinus area

3 mm

Bendable Gingiva H<1 mm Sinus area

1.5 mm
BASAL implants

BASAL implants are used to create multiple unit restorations in the upper and lower jaws. Can be placed in extraction sockets and in healed bone. The structural characteristics allow placement in height and width deficient bones. Can be placed with flap or flapless technique. Can be used to bypass the mandibular nerve, and for engagement of the cortical bone at the fusion of the pterygoid with the maxilla. Can be used in combination with compressive implants. Can be adjusted up to 15° relative to the implant axis.

- Ideal for resorbed ridges
- Immediate loading
- Placement in the socket of an extracted tooth
- Excellent protection from inflammation around the implant
- Abutment adjustment angle up to 15°

Clinical case

Dr. Ducko Aurel
Slovakia

More clinical cases at Open Dental Community Group on Facebook
Wide range of sizes
From short and wide to thin and long

Different surfaces
Polished, sandblasted and anodized

Long polished bendable neck
Depending on the length of the implant the abutment can be bent up to 15° as long as the implant is placed in sound bone
Polished surface protects from accumulation of bacteria at the cervical part of the implant

Smart instrument sets
Universal set consisting of 12 drills to use with any implants type or size of Roott open implant system.
Basal implants

- occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
Sandblasted basal implants

ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter;
α - total internal angle (°); s - intraosseous square area (mm²); i - internal.
External platform

Transfers

<table>
<thead>
<tr>
<th>REF</th>
<th>TRA</th>
<th>TOE</th>
<th>TOEA</th>
<th>TOES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plastic Rotational</td>
<td>Titanium Rotational</td>
<td>Titanium Anti-Rotational</td>
<td>Titanium Rotational Short</td>
</tr>
</tbody>
</table>

Analogues

<table>
<thead>
<tr>
<th>REF</th>
<th>ANA</th>
<th>ANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plastic Rotational</td>
<td>Titanium Anti-Rotational</td>
</tr>
</tbody>
</table>
Titanium caps

TCE0 0 mm TCE1 1 mm TCE2 2 mm TCE3 3 mm

TCES0 0 mm TCES1 1 mm TCES2 2 mm

TCEXS1 1 mm TCEXS2 2 mm

REF 1 mm 2 mm 3 mm
PEEK caps

PEEK caps

Short
- PCE0: 0 mm
- PCE1: 1 mm
- PCE2: 2 mm
- PCE3: 3 mm

Extra short
- PCEXS1: 1 mm
- PCEXS2: 2 mm
Burnout parts

Titanium caps for two-piece implants
ROOTFORM implants

Two-component Rootform implant with combined thread and reliable tapered connection is intended for single and multiple restorations with immediate and delayed loading in the upper and lower jaws in all types of bone tissue. Implant can be placed by flap or flapless approach with subcrestal position of the implants. Implant placement is also possible immediately following tooth extraction, as long as sufficient bone tissue is available.

- High primary stability in all bone types
- Active self-tapping thread
- Reliable implant-abutment connection

More clinical cases at Open Dental Community Group on Facebook

Dr. Mohamad El Moheb
France
Wide range of sizes
From short and wide to thin and long

Highly stable and secure connection
Precision cone and internal hex, connection accurate +/- 0.007 mm

Multifunctional part CRE
Made from Ti6Al4V. Can be used as:
- Carrier for implant insertion (up to 40 N/cm)
- Abutment for immediate loading
- Base for individual gingiva former
- Transfer for open/close tray

Universal instrument set
Two-piece implants

- o - occlusal diameter (mm)
- i - intraosseous diameter (mm)
- a - apical diameter (mm)
- \(\alpha \) - total internal angle (°)
- s - intraosseous square area (mm²)
- i - internal
<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3506</th>
<th>R3806</th>
<th>R4206</th>
<th>R4806</th>
<th>R5506</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.5</td>
<td>3.3</td>
<td>3.3</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.5</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.6</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.7</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.8</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3508</th>
<th>R3808</th>
<th>4208</th>
<th>R4808</th>
<th>R5508</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.5</td>
<td>3.3</td>
<td>3.3</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.6</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.7</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.8</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.9</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3010</th>
<th>R3510</th>
<th>R3810</th>
<th>R4210</th>
<th>R4810</th>
<th>R5510</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3012</th>
<th>R3512</th>
<th>R3812</th>
<th>R4212</th>
<th>R4812</th>
<th>R5512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3014</th>
<th>R3514</th>
<th>R3814</th>
<th>R4214</th>
<th>R4814</th>
<th>R5514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3016</th>
<th>R3516</th>
<th>R3816</th>
<th>R4216</th>
<th>R4816</th>
<th>R5516</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>R3016</th>
<th>R3516</th>
<th>R3816</th>
<th>R4216</th>
<th>R4816</th>
<th>R5516</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Ø 3.8</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Ø 4.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Ø 5.5</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
<td>3.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Gingiva formers

Bone build-up

- GFNo
- GFo

Narrow

- GFN2
 - H: 3.8 mm
- GFN4
 - H: 5.8 mm
- GFN6
 - H: 7.8 mm

Regular

- GF1
 - H: 3.1 mm
- GF2
 - H: 3.8 mm
- GF3
 - H: 4.8 mm
- GF4
 - H: 5.8 mm
- GF5
 - H: 6.8 mm
- GF6
 - H: 7.8 mm
- GF7
 - H: 8.8 mm

Individual (PEEK)

- GFI
 - H: 8.8 mm
Transfers & implant analogs

REF TOS TO TR (+TC cap) TRD SPCO AN
Open tray Close tray Digital

TC
Free transfer cap with each transfer
Abutments

Straight abutments for conometric prosthetic solutions

Straight anatomical abutments
15° angulated anatomical abutments

- REF: A1A15
 - H: 9.4 mm

- REF: A2A15
 - H: 10.4 mm

- REF: A3A15
 - H: 11.4 mm

- REF: A4A15
 - H: 12.4 mm

25° angulated anatomical abutments

- REF: A1A25
 - H: 9.4 mm

- REF: A2A25
 - H: 10.4 mm

- REF: A3A25
 - H: 11.4 mm

- REF: A4A25
 - H: 12.4 mm
Transgingival abutments

How it works

- **Place BP cap on AT abutment**
- **Adjust height by cutting**
- **Use wax for modelling future crown**
- **Fix crown to AT abutment**

BP — free burn out part with each transgingival abutment
Attachments

<table>
<thead>
<tr>
<th>REF</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4.3 mm</td>
<td>5.2 mm</td>
<td>6.2 mm</td>
<td>7.2 mm</td>
<td>8.2 mm</td>
</tr>
</tbody>
</table>

Matrix housing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Titanium matrix housing with PEEK insert</td>
<td>PEEK matrix housing with PEEK insert</td>
<td>Titanium matrix housing with attachment option</td>
<td>Model analog</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forming/fixing matrix</td>
<td>Processing spacer</td>
<td>Mounting collar</td>
<td>Mounting insert</td>
</tr>
</tbody>
</table>
Retention inserts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra-light</td>
<td>0.3 kg</td>
<td>Light</td>
<td>0.75 kg</td>
<td>Medium</td>
<td>1.2 kg</td>
<td>Strong</td>
</tr>
</tbody>
</table>

CAD-CAM platforms

<table>
<thead>
<tr>
<th>REF</th>
<th>PCOR</th>
<th>PCO1</th>
<th>PCO2</th>
<th>PCO3</th>
<th>PCO1s</th>
<th>PCO2s</th>
<th>PCO3s</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.5 mm</td>
<td>1.5 mm</td>
<td>2.5 mm</td>
<td>3.5 mm</td>
<td>1.5 mm</td>
<td>2.5 mm</td>
<td>3.5 mm</td>
</tr>
</tbody>
</table>
Regular multi-unit abutment

- M1: 3 mm
- M2: 3.5 mm
- M3: 4.5 mm
- M4: 5.5 mm

Small multi-unit abutment

- MS1: 3 mm
- MS2: 3.5 mm
- MS3: 4.5 mm
- MS4: 5.5 mm
Angulated multi-unit abutment

15°

- **M1A15**: 3 mm
- **M2A15**: 3.5 mm
- **M3A15**: 4.5 mm
- **M4A15**: 5.5 mm

30°

- **M1A30**: 3 mm
- **M2A30**: 3.5 mm
- **M3A30**: 4.5 mm
- **M4A30**: 5.5 mm

45°

- **M1A45**: 3 mm
- **M2A45**: 3.5 mm
- **M3A45**: 4.5 mm
- **M4A45**: 5.5 mm
One platform
Multi-unit
Compressive M implants

- **o**: occlusal diameter (mm)
- **i**: intraosseous diameter (mm)
- **a**: apical diameter (mm)
- **n**: neck diameter
- **α**: total internal angle (°)
- **s**: intraosseous square area (mm²)
- **i**: internal

\[\begin{align*}
\text{o} & = \text{occlusal diameter (mm)} \\
\text{i} & = \text{intraosseous diameter (mm)} \\
\text{a} & = \text{apical diameter (mm)} \\
\text{n} & = \text{neck diameter} \\
\text{α} & = \text{total internal angle (°)} \\
\text{s} & = \text{intraosseous square area (mm²)} \\
i & = \text{internal}
\end{align*}\]
Compressive MP implants

- occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter;
 α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
Transfers & analogue

- **TOM**: Open tray
- **TRM (+TC cap)**: Close tray
- **SPCOM**: Scan-body
- **ANM**: M platform Analogue

Platforms & abutments

- **PCOM**: Titanium base
- **AM**: Straight abutment
- **ABMU**: Burnout abutment
- **ABMUA**: Angulated burnout abutment
Gingiva formers

GFM0
3 mm

GFM1
4 mm

GFM2
5 mm

GFM3
6 mm

GFM4
7 mm

GFM5
8 mm

GFM6
9 mm

GFM7
10 mm

GFMN0
3 mm

GFMN2
5 mm

GFMN4
7 mm

GFMN6
9 mm
Compressive MS implants

- o - occlusal diameter (mm)
- i - intraosseous diameter (mm)
- a - apical diameter (mm)
- n - neck diameter
- α - total internal angle (°)
- s - intraosseous square area (mm²)
- i - internal
Transfers & analogue

- **TOMS**
 - Open tray
- **TRMS (+TC cap)**
 - Close tray
- **SPCOMS**
 - Scan-body
- **ANMS**
 - MS platform Analogue

Platforms & abutments

- **PCOMS**
 - Titanium base
- **AMS**
 - Straight abutment
- **ABMUS**
 - Burnout abutment
- **ABMUSA**
 - Angulated burnout abutment
Gingiva formers

GFMS0
3 mm

GFMS1
4 mm

GFMS2
5 mm

GFMS3
6 mm

GFMS4
7 mm

GFMS5
8 mm

GFMS6
9 mm

GFMS7
10 mm

GFMNS0
1 mm

GFMNS2
2 mm

GFMNS4
4 mm

GFMNS6
6 mm
ROOTFORM

Rootform drills

Pilot drills
- DB2020 6-16 mm
- D2020 2-16 mm

Form drills
- D25xx 2-16 mm
- D43xx 2-16 mm
- D28xx 2-16 mm
- D46xx 2-16 mm
- D32xx 2-16 mm
- D50xx 2-16 mm
- D36xx 2-16 mm
- D53xx 2-16 mm
- D40xx 2-16 mm
- D5506 6 mm

Compressive drills
- DC30xx 6-20 mm
- DC45xx 6-20 mm
- DC35xx 6-20 mm
- DC50xx 6-14 mm
- DC40xx 6-20 mm
- DC55xx 6-14 mm
Screwdrivers

1.25 mm

<table>
<thead>
<tr>
<th>SD</th>
<th>SDL</th>
<th>SDXL</th>
<th>SDLB</th>
<th>SDXLB</th>
<th>SDH</th>
<th>SDHL</th>
<th>SDHXL</th>
<th>SDAO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

- **SD**: For ratchet
- **SDL**: Ball hex
- **SDXL**: Ball hex
- **SDLB**: Ball hex
- **SDXLB**: Ball hex
- **SDH**: For handpiece
- **SDHL**: For handpiece
- **SDHXL**: For handpiece
- **SDAO**: For AO handle

Tools

- **SR**: Screw removal
- **P2**: Parallel pin
- **ET**: Extension tool

- **ETH**: Handpiece tool
- **ETAO**: AO handle tool
Insertion tools

Internal platform

- **IT**
 - For ratchet
- **ITL**
 - For handpiece
- **ITH**
- **ITHL**
- **ITAO**
 - For AO handle

External platform

- **ITES**
 - For ratchet
- **ITE**
 - For handpiece
- **ITEL**
- **ITEXL**
- **ITEH**
- **ITEHL**
- **ITEAO**
 - For AO handle
M platform

For ratchet

For AO handle

MS platform

For ratchet
Universal instrument set TRS-S

Insertion tools
- ITE
- ITEL
- IT
- ITL
- ITHE

Hex drivers
- SD
- SDL

Removal tool
- SR
Pilot drills
DB2020

Form drills
D2516
D2816
D3216
D3616
D4016

Torque wrench TW50

Direct wrench DW

Direction indicator DIR
Upcoming events

ADF
27-30 November 2019
Paris
Association Dentaire Francaise Exhibition
Stand 4Lo8

AEEDC
4-6 February 2020
Dubai
UAE International Dental Conference & Arab Dental Exhibition
Stand 6Fo1

IDEM
24-26 April 2020
Singapore
International Dental Exhibition and Meeting
Stand 6G21
Regular courses

Bone growth over implant
by Dr. Mohamad El Moheb
January 24-25, Paris

Cortically Fixed @ Once
by Henri Diederich DDS
May 11-13, London

Conometric solutions
by Dr. Dainius Karpavicius
January 24-25, Kaunas, Lithuania
Start kits

Try unique features at affordable price

– TRY3 –
20 dental implant parts including 3 implants

– TRY10 –
46 dental implant parts including 10 implants

– ROOTT –
119 parts including 22 implants and instrument set

TRATE AG
Seestrasse 58
8806 Bach
Switzerland

t +41 44 202 1919
f +41 44 202 1920
info@trate.com
trate.com