Excellent 5 years clinical evidence with ROOTT implants

Average survival rate

The post-market clinical follow-up study showed a significantly high average survival rate of 97.86% of the entire ROOTT Dental Implant System.

Report from 2021-05-24

High quality and safety standards

Medical devices under this catalog are in compliance with established EU regulatory requirements.
Confidence with traditional approach

Minimally invasive alternatives
Two-piece implant

Cement & screw retained

Immediate & delayed placement.

1 package – does it all

- Multiple and single restorations.
- Immediate & delayed placement.

Primary stability

- V-shape design
- Efficient insertion
- Sandy surface
- Optimum adhesion
- Variable threads
- Bone condensation

Secure connection

No microgap / no micromovement

10° cone & internal hex

Single platform

Healing abutment

Regular abutment

Direct scan

Transfer
Multiple possibilities

Freedom and flexibility with switching platform and morse taper connection for all prosthetic components & all implant sizes of

Ø: 3.0–5.5mm
L: 6–16mm

Easy management

By Dr. Mohamad El Moheb

By Dr. Roman Novichenko

More cases
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm);
α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
<table>
<thead>
<tr>
<th>Size</th>
<th>Ti6Al4V ELI</th>
<th>ø</th>
<th>ø</th>
<th>ø</th>
<th>ø / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm</td>
<td>R3508</td>
<td>3.5</td>
<td>3.3</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>R3808</td>
<td>3.8</td>
<td>3.4</td>
<td>3.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>R4208</td>
<td>4.1</td>
<td>3.2</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>R4808</td>
<td>4.2</td>
<td>3.2</td>
<td>4.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Ti6Al4V ELI</th>
<th>ø</th>
<th>ø</th>
<th>ø</th>
<th>ø / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm</td>
<td>R3010</td>
<td>3.0</td>
<td>2.8</td>
<td>3.1</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>R3510</td>
<td>3.5</td>
<td>3.3</td>
<td>3.4</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>R3810</td>
<td>3.8</td>
<td>3.3</td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>R4210</td>
<td>4.1</td>
<td>3.2</td>
<td>3.4</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>R4810</td>
<td>4.2</td>
<td>3.2</td>
<td>4.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Ti6Al4V ELI</th>
<th>ø</th>
<th>ø</th>
<th>ø</th>
<th>ø / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 mm</td>
<td>R3012</td>
<td>3.0</td>
<td>2.7</td>
<td>3.1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>R3512</td>
<td>3.4</td>
<td>3.2</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>R3812</td>
<td>3.7</td>
<td>3.3</td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>R4212</td>
<td>3.8</td>
<td>3.2</td>
<td>3.4</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>R4812</td>
<td>4.1</td>
<td>3.2</td>
<td>4.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Ti6Al4V ELI</th>
<th>ø</th>
<th>ø</th>
<th>ø</th>
<th>ø / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm</td>
<td>R3014</td>
<td>3.0</td>
<td>2.5</td>
<td>3.1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>R3514</td>
<td>3.4</td>
<td>3.2</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>R3814</td>
<td>3.7</td>
<td>3.3</td>
<td>3.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>R4214</td>
<td>3.5</td>
<td>3.2</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>R4814</td>
<td>4.1</td>
<td>3.2</td>
<td>4.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Ti6Al4V ELI</th>
<th>ø</th>
<th>ø</th>
<th>ø</th>
<th>ø / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 mm</td>
<td>R3016</td>
<td>2.9</td>
<td>2.4</td>
<td>3.1</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>R3516</td>
<td>3.3</td>
<td>3.2</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>R3816</td>
<td>3.6</td>
<td>3.4</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>R4216</td>
<td>3.4</td>
<td>3.2</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>R4816</td>
<td>4.0</td>
<td>3.2</td>
<td>4.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm);
α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
<table>
<thead>
<tr>
<th>Ø 5.5</th>
<th>Ø 6.5</th>
<th>Ø 7.5</th>
<th>Ø 8.5</th>
<th>ø / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5506</td>
<td>R6506</td>
<td>R7506</td>
<td>R8506</td>
<td>6 mm</td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>4118</td>
</tr>
<tr>
<td>167</td>
<td>226</td>
<td>385</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>R5508</td>
<td>R6508</td>
<td>R7508</td>
<td>R8508</td>
<td>8 mm</td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>4118</td>
</tr>
<tr>
<td>230</td>
<td>317</td>
<td>385</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>R5510</td>
<td>R6510</td>
<td>R7510</td>
<td>R8510</td>
<td>10 mm</td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>31110</td>
</tr>
<tr>
<td>246</td>
<td>338</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>R5512</td>
<td>R6512</td>
<td>R7512</td>
<td>R8512</td>
<td>12 mm</td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>31110</td>
</tr>
<tr>
<td>315</td>
<td>435</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>R5514</td>
<td>R6514</td>
<td>R7514</td>
<td>R8514</td>
<td>14 mm</td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>31110</td>
</tr>
<tr>
<td>385</td>
<td>533</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>R5516</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
</tr>
</tbody>
</table>

Ti6Al4V ELI
Healing abutments

Bone build-up

- GFN0
- GF0

Narrow

- GFN2
- GFN4
- GFN6

Regular

- GF1
- GF2
- GF3
- GF4
- GF5
- GF6
- GF7

One-piece

- GFP3
- GFP4
- GFP5

Individual (PEEK)

- GFI
Transfers & implant analogs

REF TOS TO TR (÷TC cap) TOD AN

Open tray Close tray Analog

REF SPCO SPCOIO SPCOSIR AND

Scan post Scan post Scan post Digital analog
Laboratory Intra-oral Sirona

Instructions
Abutments

Straight anatomical abutments

<table>
<thead>
<tr>
<th>REF</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.8 mm</td>
<td>9.3 mm</td>
</tr>
<tr>
<td>A2</td>
<td>4.8 mm</td>
<td>10.3 mm</td>
</tr>
<tr>
<td>A3</td>
<td>4.8 mm</td>
<td>11.3 mm</td>
</tr>
<tr>
<td>A4</td>
<td>4.8 mm</td>
<td>12.3 mm</td>
</tr>
<tr>
<td>A1N</td>
<td>4.8 mm</td>
<td>9.75 mm</td>
</tr>
</tbody>
</table>

15° angled anatomical abutments

<table>
<thead>
<tr>
<th>REF</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1A15</td>
<td>4.8 mm</td>
<td>9.4 mm</td>
</tr>
<tr>
<td>A2A15</td>
<td>4.8 mm</td>
<td>10.4 mm</td>
</tr>
<tr>
<td>A3A15</td>
<td>4.8 mm</td>
<td>11.4 mm</td>
</tr>
<tr>
<td>A4A15</td>
<td>4.8 mm</td>
<td>12.4 mm</td>
</tr>
</tbody>
</table>

25° angled anatomical abutments

<table>
<thead>
<tr>
<th>REF</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1A25</td>
<td>4.8 mm</td>
<td>9.4 mm</td>
</tr>
<tr>
<td>A2A25</td>
<td>4.8 mm</td>
<td>10.4 mm</td>
</tr>
<tr>
<td>A3A25</td>
<td>4.8 mm</td>
<td>11.4 mm</td>
</tr>
<tr>
<td>A4A25</td>
<td>4.8 mm</td>
<td>12.4 mm</td>
</tr>
</tbody>
</table>
Transgingival abutments

<table>
<thead>
<tr>
<th>REF</th>
<th>AT1</th>
<th>AT2</th>
<th>AT3</th>
<th>AT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>8.9 mm</td>
<td>9.4 mm</td>
<td>10.4 mm</td>
<td>11.4 mm</td>
</tr>
</tbody>
</table>

BP — free burn out part with each transgingival abutment

How it works

Place BP cap on AT abutment
Adjust height by cutting
Use wax for modelling future crown
Fix crown to AT abutment
One-piece abutments for telescopic fixation

Narrow abutments for telescopic fixation
Titanium abutments for telescopic fixation

PEEK abutments for telescopic fixation
Attachments

H
B1 4.3 mm
B2 5.2 mm
B3 6.2 mm
B4 7.2 mm
B5 8.2 mm

HBC
BCW
BCY
BCP

Burn-out abutments

AB
Burnout with positioning
Can be used with PCO1...PCO3S

ABR
Burnout without positioning
Can be used with PCO1...PCO3, PCO1S...PCO3S

ABM
Burnout with titanium base

A1NP
Burnout straight, narrow
Titanium base

Regular

REF: PCOR
H
1.5 mm

PCO1
1.5 mm

PCO2
2.5 mm

PCO3
3.5 mm

Short

REF: PCORs
H
1.5 mm

PCO1s
1.5 mm

PCO2s
2.5 mm

PCO3s
3.5 mm

For Sirona

REF: ATR2
H
1.8

PCO
1.5 mm
Pre-milled abutments

PMAB
Ø 11.5mm

PMABP
PEEK
Ø 11.5mm

Multi-unit abutments

Small multi-unit abutments

REF
H
MS1
3 mm
MS2
3.5 mm
MS3
4.5 mm
MS4
5.5 mm

Regular multi-unit abutments

REF
H
M1
3 mm
M2
3.5 mm
M3
4.5 mm
M4
5.5 mm
15° angled multi-unit abutments

REF
M1A15
3 mm
M2A15
3.5 mm
M3A15
4.5 mm
M4A15
5.5 mm

30° angled multi-unit abutments

REF
M1A30
3 mm
M2A30
3.5 mm
M3A30
4.5 mm
M4A30
5.5 mm

45° angled multi-unit abutments

REF
M1A45
3 mm
M2A45
3.5 mm
M3A45
4.5 mm
M4A45
5.5 mm
Superstructures for multi-unit abutments

Transfers & analogs

- **TOM**: Open tray
- **TOML**: Open tray
- **TRM**: Close tray
- **ANM**: M platform analog
- **ANMD**: M platform digital analog

Abutments

- **PCOM**: Titanium base
- **AM**: Straight abutment
- **ABMU**: Burnout abutment
- **ABMUA**: 15° angled burn-out abutment

Healing abutments

- **GFM0**: 2.6 mm
- **GFM2**: 5 mm
- **GFM4**: 7 mm
- **GFM6**: 9 mm
Superstructures for small multi-unit abutments

Transfers & analogs

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMS</td>
<td>Open tray</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>TRMS (+TC cap)</td>
<td>Close tray</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>SPCOMS</td>
<td>Scan post laboratory</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>SPCOMIOS</td>
<td>Scan post intra-oral</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ANMS</td>
<td>MS platform analog</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>ANMSD</td>
<td>MS platform digital analog</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Abutments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOMS</td>
<td>Titanium base</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>AMS</td>
<td>Straight abutment</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ABMUS</td>
<td>Burnout abutment</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ABMUSA</td>
<td>15° angled burn-out abutment</td>
<td>15°</td>
<td></td>
</tr>
</tbody>
</table>

Healing abutments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFMS0</td>
<td>3 mm</td>
<td>5.6</td>
<td>H</td>
</tr>
<tr>
<td>GFMS2</td>
<td>5 mm</td>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>GFMS4</td>
<td>7 mm</td>
<td>9</td>
<td>H</td>
</tr>
<tr>
<td>GFMS6</td>
<td>9 mm</td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>
Simple solution to bone atrophy

One-piece implant for more comfort and simplicity with a bendable neck for up to 15°. It ensures extreme time and cost-saving, which also comes with less complications and more patient acceptance.

Due to its thin design, excellent fit for narrow ridge and ensured safety due to the alveolar canal nerve bypass. Developed for single and multiple restorations.

Condensing thread

Avoiding inferior alveolar canal nerve

Together with special condensing threads and embedded abutment with no microgaps, implant achieves excellent initial stability from the very beginning.
Prosthetic variety

Cement retain with trimmable external platform, burnouts or cement-free option with patented telescopic abutments.

Easy management

TRS
TRS-mini

Clinical cases

“FILO System is suitable in all clinical cases. Even esthetic area, narrow spaces, post-extraction and soft tissues management”

By Dr. Alvaro Bastida

Significant time & cost saving

Immediate loadings

Excellent for narrow ridge

May avoid bone augmentation

Bending

Gingiva h>1 mm

No bending

Gingiva h<1 mm

5mm

4mm

3mm
\(\phi \) - occlusal diameter (mm); \(i \) - intraosseous diameter (mm); \(a \) - apical diameter (mm); \(n \) - neck diameter;
\(\alpha \) - total internal angle (°); \(s \) - intraosseous square area (mm²); \(i \) = internal.
ROOTTCS

ROOTTC
Bendable
Gingiva H<1 mm
Sinus area

ROOTTCS
Bendable
Gingiva H<1 mm
Sinus area

3 mm

1.5 mm
C4006s
31 | 2.0
2.4 | 1.2
59 | 1.8

C4506s
35 | 2.1
2.9 | 1.4
73 | 1.8

C4008s
31 | 2.0
2.4 | 1.2
80 | 1.3

C4508s
36 | 2.2
2.9 | 1.4
100 | 1.3

C4010s
2.9 | 1.8
1.9 | 0.8
92 | 1.3

C4510s
3.4 | 1.9
2.4 | 1.0
117 | 1.3

Ti6Al4V ELI
Especialy effective in atrophic bone with bi-cortical engagement

ROOTT B and ROOTT BS one-piece implants are designed for deficient bone in height and width. It provides efficiency in time and costs, with a bending option and a very sharp thread to enter corticalized and medullary bone. Designed to bypass the mandibular nerve, and for engagement of the cortical bone at the fusion of the pterygoid with the maxilla. Can be used with ROOTT C implants.

Bending

Abutment direction can be adjusted up to 15° relative to the implant axis, when implant neck is equal or longer than 3mm.
Prosthetic variety

Cement retain with trimmable external platform, burnouts or cement-free option with patented telescopic abutments.

Surface

ROOTT B implant surface is polished for protection from bacteria accumulation

ROOTT BS is sandblasted and anodized.

RBM surface provides:
- excellent sanitization
- high BIC
- great osseointegration
- high success rate

Sizes

Ø:3.5–10.5mm
L: 6–26mm

Ø:3.5–4.5mm
L: 6–26mm

Easy management
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
<table>
<thead>
<tr>
<th>ø / L</th>
<th>6 mm</th>
<th>8 mm</th>
<th>10 mm</th>
<th>12 mm</th>
<th>14 mm</th>
<th>16 mm</th>
<th>18 mm</th>
<th>20 mm</th>
<th>22 mm</th>
<th>24 mm</th>
<th>26 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in 15</td>
<td>in 3</td>
<td>in 3</td>
<td>in 3</td>
<td>in 5</td>
<td>in 7</td>
<td>in 7</td>
<td>in 7</td>
<td>in 7</td>
<td>in 7</td>
<td>in 7</td>
</tr>
<tr>
<td>ø 3.5</td>
<td>B3506</td>
<td>B3508</td>
<td>B3510</td>
<td>B3512</td>
<td>B3514</td>
<td>B3516</td>
<td>B3518</td>
<td>B3520</td>
<td>B3522</td>
<td>B3524</td>
<td>B3526</td>
</tr>
<tr>
<td>Ø 3.1</td>
<td>s 73</td>
<td>a 18</td>
<td>s 45</td>
<td>a 13</td>
<td>s 60</td>
<td>a 6</td>
<td>s 80</td>
<td>a 5</td>
<td>s 80</td>
<td>a 5</td>
<td>s 103</td>
</tr>
<tr>
<td>ø 1.6</td>
<td>s 68</td>
<td>a 13</td>
<td>s 90</td>
<td>a 6</td>
<td>s 122</td>
<td>a 5</td>
<td>s 122</td>
<td>a 5</td>
<td>s 122</td>
<td>a 5</td>
<td>s 158</td>
</tr>
<tr>
<td>ø 1.4</td>
<td>s 101</td>
<td>a 10</td>
<td>s 98</td>
<td>a 9</td>
<td>s 129</td>
<td>a 7</td>
<td>s 129</td>
<td>a 7</td>
<td>s 142</td>
<td>a 6</td>
<td>s 181</td>
</tr>
<tr>
<td>n 2.05</td>
<td>s 142</td>
<td>a 6</td>
<td>s 181</td>
<td>a 5</td>
<td>s 226</td>
<td>a 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ø 4.5</th>
<th>B4508</th>
<th>B4510</th>
<th>B4512</th>
<th>B4514</th>
<th>B4516</th>
<th>B4518</th>
<th>B4520</th>
<th>B4522</th>
<th>B4524</th>
<th>B4526</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 4.2</td>
<td>s 68</td>
<td>a 13</td>
<td>s 90</td>
<td>a 6</td>
<td>s 122</td>
<td>a 5</td>
<td>s 122</td>
<td>a 5</td>
<td>s 158</td>
<td>a 4</td>
</tr>
<tr>
<td>ø 2.0</td>
<td>s 101</td>
<td>a 10</td>
<td>s 98</td>
<td>a 9</td>
<td>s 129</td>
<td>a 7</td>
<td>s 129</td>
<td>a 7</td>
<td>s 142</td>
<td>a 6</td>
</tr>
<tr>
<td>ø 1.7</td>
<td>s 142</td>
<td>a 6</td>
<td>s 181</td>
<td>a 5</td>
<td>s 226</td>
<td>a 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 2.35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ø 5.5</th>
<th>B5508</th>
<th>B5510</th>
<th>B5512</th>
<th>B5514</th>
<th>B5516</th>
<th>B5518</th>
<th>B5520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 4.3</td>
<td>s 101</td>
<td>a 10</td>
<td>s 98</td>
<td>a 9</td>
<td>s 129</td>
<td>a 7</td>
<td>s 142</td>
</tr>
<tr>
<td>ø 2.1</td>
<td>s 142</td>
<td>a 6</td>
<td>s 181</td>
<td>a 5</td>
<td>s 226</td>
<td>a 4</td>
<td></td>
</tr>
<tr>
<td>ø 1.7</td>
<td>s 142</td>
<td>a 6</td>
<td>s 181</td>
<td>a 5</td>
<td>s 226</td>
<td>a 4</td>
<td></td>
</tr>
<tr>
<td>n 2.35</td>
<td>s 142</td>
<td>a 6</td>
<td>s 181</td>
<td>a 5</td>
<td>s 226</td>
<td>a 4</td>
<td></td>
</tr>
<tr>
<td>ø / øi / øa</td>
<td>ø / L</td>
<td>Ø mm</td>
<td>Ø / L</td>
<td>Ø / L</td>
<td>Ø / L</td>
<td>Ø / L</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>8 mm</td>
<td>10 mm</td>
<td>12 mm</td>
<td>14 mm</td>
<td>16 mm</td>
<td>18 mm</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6508</td>
<td>s 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6510</td>
<td>s 113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6512</td>
<td>s 132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6514</td>
<td>s 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6516</td>
<td>s 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8508</td>
<td>s 143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8510</td>
<td>s 117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8512</td>
<td>s 116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8514</td>
<td>s 118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8516</td>
<td>s 264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8518</td>
<td>s 351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1110</td>
<td>s 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1112</td>
<td>s 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1114</td>
<td>s 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\varnothing 3.5 \)

\(\alpha \) - occlusal diameter (mm); \(i \) - intraosseous diameter (mm); \(a \) - apical diameter (mm); \(n \) - neck diameter; \(\alpha \) - total internal angle (°); \(s \) - intraosseous square area (mm²); \(i \) = internal.
<table>
<thead>
<tr>
<th>ø / L</th>
<th>6 mm</th>
<th>8 mm</th>
<th>10 mm</th>
<th>12 mm</th>
<th>14 mm</th>
<th>16 mm</th>
<th>18 mm</th>
<th>20 mm</th>
<th>22 mm</th>
<th>24 mm</th>
<th>26 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ln 15</td>
<td>ln 3</td>
<td>ln 3</td>
<td>ln 3</td>
<td>ln 5</td>
<td>ln 7</td>
<td>ln 7</td>
<td>ln 7</td>
<td>ln 7</td>
<td>ln 7</td>
<td>ln 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ø 3.5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s 73</td>
<td>s 45</td>
<td>s 60</td>
<td>s 80</td>
<td>s 80</td>
<td>s 103</td>
<td>s 126</td>
<td>s 146</td>
<td>s 165</td>
</tr>
<tr>
<td>α 18</td>
<td>α 13</td>
<td>α 6</td>
<td>α 5</td>
<td>α 5</td>
<td>α 4</td>
<td>α 3</td>
<td>α 2</td>
<td>α 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ø 4.5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s 116</td>
<td>s 68</td>
<td>s 90</td>
<td>s 122</td>
<td>s 122</td>
<td>s 122</td>
<td>s 158</td>
<td>s 195</td>
<td></td>
</tr>
<tr>
<td>α 13</td>
<td>α 9</td>
<td>α 6</td>
<td>α 5</td>
<td>α 5</td>
<td>α 4</td>
<td>α 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Various screw models with different diameters and lengths are depicted.
- Each model is labeled with its dimensions and specifications.
External platform

Transfers

- TRA: Plastic Rotational
- TOE: Titanium Rotational
- TOEA: Titanium Anti-Rotational
- TOES: Titanium Rotational Short

Analogs

- ANA: Plastic Rotational
- ANE: Titanium Anti-Rotational
- ANED: Digital

Healing abutments

- GFE: 8.2
- GFES: 6.2
Telescopic abutments, titanium

- **TCE0**
 - 0 mm

- **TCE1**
 - 1 mm

- **TCE2**
 - 2 mm

- **TCE3**
 - 3 mm

Short

- **TCES0**
 - 0 mm

- **TCES1**
 - 1 mm

- **TCES2**
 - 2 mm

Extra short

- **TCEXS1**
 - 1 mm

- **TCEXS2**
 - 2 mm
Telescopic abutments, PEEK

<table>
<thead>
<tr>
<th></th>
<th>PCE0</th>
<th>PCE1</th>
<th>PCE2</th>
<th>PCE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>0 mm</td>
<td>1 mm</td>
<td>2 mm</td>
<td>3 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PCES0</th>
<th>PCES1</th>
<th>PCES2</th>
<th>PCEXS1</th>
<th>PCEXS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>0 mm</td>
<td>1 mm</td>
<td>2 mm</td>
<td>1 mm</td>
<td>2 mm</td>
</tr>
</tbody>
</table>

Burn-out abutments

<table>
<thead>
<tr>
<th></th>
<th>BOP</th>
<th>A0</th>
<th>A15</th>
<th>A25</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>straight</td>
<td>straight with step</td>
<td>15° angulated</td>
<td>25° angulated</td>
</tr>
</tbody>
</table>
Complete control & easy maintenance

Screw-retained restorations represent a secure and easy way to repair, maintain prosthesis, and treat peri-implant tissue inflammations more efficiently without damaging the suprastructure. ROOTT P, ROOTT M, ROOTT S are designed to use in combination for a cement-free full jaw restoration with 60 degrees between implant axes. Also, can be used with all ROOTT implants.

ROOTT P
- Ø 2.5 prosthetic screw
- Extreme condensing threads for excellent stability
- L 16–26mm
- Ø 3.5–4.5mm

ROOTT M
- Ø 2.5 prosthetic screw
- Condensing threads
- L 6–20mm
- Ø 3.5–4.5mm

ROOTT S
- Ø 1.8 prosthetic screw
- Condensing threads
- L 8–16mm
- Ø 3–3.5mm
Clinical cases

By Med. Dent. Henri Diedrich

Less invasive
Immediate loadings
Avoids sinus lift & bone grafting
Multiple restoration

Ultra resistant Ø2.5 mm screw

Easy handling
Less likely loosing a screw
Excellent fixation
Withstands occlusal forces

Easy management

By Dr. Daniel Saad

More cases
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
ο - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
<table>
<thead>
<tr>
<th>ø / L</th>
<th>16 mm</th>
<th>18 mm</th>
<th>20 mm</th>
<th>22 mm</th>
<th>24 mm</th>
<th>26 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø 3.5</td>
<td>C3516mp</td>
<td>C3518mp</td>
<td>C3520mp</td>
<td>C3522mp</td>
<td>C3524mp</td>
<td>C3526mp</td>
</tr>
<tr>
<td></td>
<td>1.28</td>
<td>1.27</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>1.17</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>1.17</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>1.17</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>198</td>
<td>220</td>
<td>248</td>
<td>274</td>
<td>297</td>
</tr>
<tr>
<td>ø 4.5</td>
<td>C4516mp</td>
<td>C4518mp</td>
<td>C4520mp</td>
<td>C4522mp</td>
<td>C4524mp</td>
<td>C4526mp</td>
</tr>
<tr>
<td></td>
<td>1.39</td>
<td>1.37</td>
<td>1.36</td>
<td>1.34</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>1.18</td>
<td>1.17</td>
<td>1.15</td>
<td>1.14</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>1.17</td>
<td>1.15</td>
<td>1.14</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>1.17</td>
<td>1.15</td>
<td>1.14</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>251</td>
<td>290</td>
<td>329</td>
<td>369</td>
<td>402</td>
<td>443</td>
</tr>
</tbody>
</table>
Transfers & implant analogs

TOM
- Open tray

TOML
- Scan post laboratory

TRM (pTC cap)
- Close tray

ANM
- Analog

SPCOM
- Scan post laboratory

SPCOMIO
- Scan post intra-oral

ANMD
- Digital analog

Abutments
- **PCOM**
 - Titanium base

- **AM**
 - Straight abutment

- **ABMU**
 - Burnout abutment

- **ABMUA**
 - 15° angled burn-out abutment
Healing abutments

Regular

- GFM0: 2.6 mm
- GFM2: 5 mm
- GFM4: 7 mm
- GFM6: 9 mm

Narrow

- GFNM0: 1.8 mm
- GFNM2: 4 mm
- GFNM4: 6 mm
- GFNM6: 8 mm

\(\phi 5.9 \)

\(\phi 5.2 \)

\(\phi 3.9 \)
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
<table>
<thead>
<tr>
<th>ø / L</th>
<th>6 mm</th>
<th>8 mm</th>
<th>10 mm</th>
<th>12 mm</th>
<th>14 mm</th>
<th>16 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø 3.0</td>
<td>C3008ms</td>
<td>s 63</td>
<td>α 6/8</td>
<td>s 95</td>
<td>α 5</td>
<td>s 128</td>
</tr>
<tr>
<td>øi 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>øi 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ø 3.5</th>
<th>C3506ms</th>
<th>s 54</th>
<th>α 6/15</th>
<th>s 91</th>
<th>α 9</th>
<th>s 109</th>
<th>α 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>øi 2.8</td>
<td></td>
<td>s 72</td>
<td>α 6/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>øi 1.8</td>
<td></td>
<td></td>
<td></td>
<td>s 127</td>
<td>α 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 2.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transfers & implant analogs

- **TOMS**
- **TRMS (+TC cap)**
- **SPCOMS**
- **SPCOMIOS**
- **ANMS**
- **ANMSD**

Abutments

- **PCOMS**
 - Titanium base
- **AMS**
 - Straight abutment
- **ABMUS**
 - Burnout abutment
- **ABMUSA**
 - 15° angled burn-out abutment
Healing abutments

Regular

GFMS0 3 mm
GFMS2 5 mm
GFMS4 7 mm
GFMS6 9 mm

Narrow

GFNMS0 3 mm
GFNMS2 5 mm
GFNMS4 7 mm
GFNMS6 9 mm
Excelent stability in lateral alveolar walls & soft bone

ROOT K implant provides exceptional possibilities to retain prosthetics with telescopic principle with alternative fixation screw, which can be used for additional fastening.

There are also a regular telescopic (titanium or PEEK) & cement retention options.

The implant body is created regarding the natural formation of the bone. As bone disintegrates, it resembles stretched oval; therefore, ROOTT K’s top part is narrow, widening in the middle. This shape is also designed for an opportunity to additionally fixate the implant to lateral alveolar walls.
ROOTT K implant has 20-50% wider surface area than traditional two-piece or alternative ROOTT one-piece implants of the same parameters. It is essential in clinical situations where large occlusal forces are observed, especially in soft bone structures. This feature provides multi-cortical fixations, resulting in the surface area of an implant that is enlarged.

Surface area

<table>
<thead>
<tr>
<th>Implant</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3510</td>
<td>137.3mm²</td>
</tr>
<tr>
<td>C3510</td>
<td>81.8mm²</td>
</tr>
<tr>
<td>C3510k</td>
<td>145.7mm²</td>
</tr>
</tbody>
</table>

Easy management

Deep subcrestal placement | Telescopic retained
No screws under the gum | Cement retained

By Dr. Dainius Karpavicius
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
ø - occlusal diameter (mm); i - intraosseous diameter (mm); a - apical diameter (mm); n - neck diameter; α - total internal angle (°); s - intraosseous square area (mm²); i = internal.
<table>
<thead>
<tr>
<th>ø / L</th>
<th>4 mm</th>
<th>6 mm</th>
<th>8 mm</th>
<th>10 mm</th>
<th>12 mm</th>
<th>14 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø 5.0</td>
<td>C5004k</td>
<td>C5006k</td>
<td>C5008k</td>
<td>C5010k</td>
<td>C5012k</td>
<td>C5014k</td>
</tr>
<tr>
<td>ø 2.7 n 2.6</td>
<td>49</td>
<td>128</td>
<td>104</td>
<td>150</td>
<td>50</td>
<td>128</td>
</tr>
<tr>
<td>ø 5.5</td>
<td>C5504k</td>
<td>C5506k</td>
<td>C5508k</td>
<td>C5510k</td>
<td>C5512k</td>
<td>C5514k</td>
</tr>
<tr>
<td>ø 2.8 n 2.5</td>
<td>54</td>
<td>128</td>
<td>27</td>
<td>26</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>ø 6.5</td>
<td>C6504k</td>
<td>C6506k</td>
<td>C6508k</td>
<td>C6510k</td>
<td>C6512k</td>
<td>C6514k</td>
</tr>
<tr>
<td>ø 3.1 n 2.5</td>
<td>64</td>
<td>132</td>
<td>32</td>
<td>30</td>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td>ø 7.5</td>
<td>C7504k</td>
<td>C7506k</td>
<td>C7508k</td>
<td>C7510k</td>
<td>C7512k</td>
<td>C7514k</td>
</tr>
<tr>
<td>ø 3.1 n 2.8</td>
<td>74</td>
<td>132</td>
<td>32</td>
<td>30</td>
<td>229</td>
<td>189</td>
</tr>
<tr>
<td>ø 8.5</td>
<td>C8504k</td>
<td>C8506k</td>
<td>C8508k</td>
<td>C8510k</td>
<td>C8512k</td>
<td>C8514k</td>
</tr>
<tr>
<td>ø 3.1 n 2.8</td>
<td>84</td>
<td>132</td>
<td>32</td>
<td>30</td>
<td>232</td>
<td>180</td>
</tr>
</tbody>
</table>
Titanium abutments for telescopic fixation

PEEK abutments for telescopic fixation
Healing abutments

GFK
Regular
ø5.1
ø4.2
ø3.2

GFKS
Short
2.8
1

GFKXS
Extra short
3
2
4.5
Transfers

SPCOIOK TOKL TOK TOKS
Scan post Long Regular Short
intra-oral

Analogs

IAK IAKS IAKP

Prosthetic screws

FSK FSKL
ø2.4 5.1 7.1
One-piece abutment

ESK

- \(\phi 2.4 \)
- \(\phi 1.6 \)
- 3.6
- 2.0

CSK

- \(\phi 1.6 \)
- \(\phi 1.6 \)
- 4.0

Cover screw

Temporary abutments

TTCK

- \(\phi 4.95 \)
- 6.3

TTCKS

- \(\phi 4.8 \)
- 5.5

TTCKXS

- \(\phi 4.7 \)
- 4.7

Burn-out abutments

BOCK

- \(\phi 4.95 \)
- 2.0

BOCKS

- \(\phi 4.7 \)
- 2.0
Instruments

Drills

Lance drill

D1508

Twist drills

D20xx
6-26 mm

Universal drills

D2516
10-16 mm
D30xx
D2816
6-16 mm
D35xx
D3216
6-16 mm
D38xx
D3616
6-16 mm
D42xx
D4016
6-16 mm
D48xx
D4316
6-16 mm
D55xx
D4616
6-16 mm
D5016
D5316

ROOTT™

6-20 mm

DB20
10-26 mm

DB23xx
10-18 mm

ROOTT®

DC30xx
6-20 mm
DC35xx
6-20 mm
DC40xx
6-20 mm
DC45xx
6-20 mm
DC50xx
6-14 mm
DC55xx
6-14 mm

Universal drills

D1508
10-18 mm

Instruments

Twist drills

Lance drill

Drills

Twist drills
Taps

ROOTT R

TR30xx
10-16 mm

TR35xx
6-16 mm

TR38xx
6-16 mm

TR42xx
6-16 mm

TR48xx
6-16 mm

TR55xx
6-16 mm

ROOTT C

CS30xx
6-20 mm

CS35xx
6-20 mm

CS40xx
6-20 mm

CS45xx
6-20 mm

CS50xx
6-14 mm

CS55xx
6-14 mm

Universal taps

CS2518F

CS3018F

CS4016F
Handles

- **ETH**
 - Surgical handle, handpiece

- **ETR**
 - Surgical handle, ratchet

- **ETAO**
 - Surgical handle, AO

- **DW**
 - Handle for implant driver

Gauges

- **DPG**
 - Implant depth gauge

- **DIR**
 - Alignment bar

- **P2**
 - Parallel pin
Screwdrivers

1.25 mm

SD SDL SDXL SDLB SDXLB
Ball hex Ball hex

SDH SDHL SDHXL
For ratchet

SDAO SDM SDML
For handpiece For AO handle Manual

Implant drivers

ROOTT R

IT ITL ITH ITHL ITAO
For ratchet For handpiece For AO handle
General instruments

TW50
Torque wrench 10-50 Ncm

TW70
Torque wrench 10-70 Ncm

RW, RWS
Ratchet wrench

BT
Abutment bender for ROOTT

BTK, BTKL
Abutment bender for ROOTT

ET
Drill extension for handpiece

ETAO
Drill extension for AO handle

Abutment extractors

SR, SRL
Abutment extractors for ROOTT

PRT
Abutment extractor for ROOTT

PRS
Abutment extractor, screwdriver for ROOTT
Guided system

Stoppers

Stoppers S1 compatible with drills DB2020, D2020, D2516, D2816, DC3006.....DC4520

S1L02 S1L04 S1L06 S1L08 S1L10 S1L12 S1L14 S1L16

Stoppers S2 compatible with drills D3216, D3616, D4016, D4316, DC5006.....DC5514

S2L02 S2L04 S2L06 S2L08 S2L10 S2L12 S2L14 S2L16

Stoppers S3 compatible with drills D4616, D516, D5316

S3L02 S3L04 S3L06 S3L08 S3L10 S3L12 S3L14 S3L16

Sleeves and drills handles

A02SL3 A02SL2 A02SL1
A1SL3 A1SL2
A2SL3

SL02 SLS1 SLS2 SLS3
2Ingis system

Punches
- D3024 Ø 3 mm
- D4024 Ø 4 mm
- D4029 Ø 4 mm
- D5024 Ø 5 mm

Mills
- D2824 Ø 2.8 mm
- D2829 Ø 2.8 mm
- D2834 Ø 2.8 mm
- D3524 Ø 3.5 mm
- D4124 Ø 4.1 mm

Self drilling screw
- S1415
Cassettes

TRS

TRS-mini
Prosthetic workflows
Meet the intelligence with

DIGITAL SOLUTIONS

Time-efficient and accurate options enhance quality possibilities and bring the modern approach to the dental industry that dental professionals seek.

Precision is essential considering the right angle, size, depth and width for dental professionals; therefore, ROOTT offers the digital workflow allowing the possibility of designing a complete dental solution. The digital library will provide options and introductions into using software and transferring the skills into the digital workflow from the tools required to design the exterior to components offered to solve basic or complex cases.
Digital workflow

PMAB + crown

Final structure

Design/milling

* Cerec part for Sirona
** Premilled abutment blank
*** MU abutment is only accessible in digital library with angulation option and used with SFPCOMS screw for MS1, SFPCOM screw for M1

Abutments in the light grey background are angulated from 0° to 20° and are easily handled with an SDLB screw driver.
Intraoral

Scan/Impression

Extraoral

TRA TOES TOEA TOE HE

7mm 5mm 4mm 3mm
External platform

TCE TCES TCEXS

PCE PCES PCEXS

ANED

ANE

ANA
Digital workflow

Metal framework

Prosthesis with cement

Design/milling

Final structure

Telescopic abutments

Prosthesis with telescopic solutions

External platform

External platform

7mm 5mm 4mm 3mm

TCE TCES TCEXS

PCE PCES PCEXS

7mm 5mm
Digital workflow ROOTT MPS

Metal Framework

Final structure

PCOM

PCOMS

* MU abutment is only accessible in digital library with angulation option and used with SFPCOMS screw for ROOTT S, SFPCOM screw for ROOTT M/P.
Together with specialists for standards that matters

ROOTT has always sought excellence and reliability by utilizing innovative approaches and solutions right from the design stage. Since its foundation, ROOTT has put research and cutting-edge innovation at the forefront of its mission. This is the result of diligent, dedicated work and close cooperation with the Open Dental Community (Luxembourg) – an independent, international team of expert dentists and academic professionals, which provides a significant link between industry and dental professionals.

ROOTT never compromises on functionality and simplicity dedicated to dental professionals.

Simplicity
Built with profound knowledge and insight of what is necessary for practitioners to achieve perfection in their successful clinical practice.

Functionality
To ensure functionality and flexibility every product is probed, diligent and dedicated for every specialist need. Each and every single piece of product is created with the research of doctors.
Restoring smile in one day
Conrad Abu Dhabi Etihad Towers, Abu Dhabi

Full jaws re-invented: Innovative solutions made handy
The St.Regis Abu Dhabi

Infinite potential with immediate implantation. Secrets of successful cases
The Abu Dhabi EDITION, Abu Dhabi

Successful implantation in atrophied bone
Hilton Vienna Plaza, Austria

Full jaws re-invented: Innovative solutions made handy
Conrad Dubai Hotel, Dubai

Infinite potential with immediate implantation. Secrets of successful cases
Conrad Dubai Hotel, Dubai
70+ distributors

Products & events
roott.ch

Clinical cases
opdeco.org