ROOTT implant library for Exocad software

We recommend following these rules :

- Do not mix different products between implant categories. The only exception is the ROOTT R library. In which ROOTT S and ROOTT M scan posts with M1/MS1 abutments could be used with ROOTT R library.
- ROOTT R, ROOTT M, ROOTT S, ROOTT P implant systems intended for two-piece implants, ROOTT C, ROOTT CS, ROOTT B, ROOTT BS for one piece.
- Two-piece implants work in principle following implant + together with an abutment, and onepiece implants are based on the telescopic abutment.
- Library name are created from terms: Manufacturer+ Implant + abutment, material.
- Be sure about correct digital and scan post position-it guarantee workflow accuracy(how to detect correct identification.
- Products can only be used as long as the product is in pristine/precise condition: the surface is not scratched, reshaped, deformed (any change in the shape of the scanning body may adversely affect the accuracy of the scanning process and the subsequent accuracy of the workflow and result).

The details included in Exocad library

• ROOTT B; ROOTT BS; ROOTT C; ROOTT CS (External platform telescopic abutments:

PCE0 - PCE3, PCES1-PCES3, PCEXS1-PCEXS2, TCE0 - TCE3, TCES1-TCES3, TCEXS0-TCEXS2)

- ROOTT M (PCOM, digital detail for framework)
- ROOTT P (PCOM, digital detail for framework)
- ROOTT S (PCOMS, digital detail for framework)
- ROOTT R (PCO1 PCO3, POC1S PCO3S, PCO, CRE, PMAB)
- Scan post (SPCO, SPCOIO, SPCOM, SPCOMIO, SPCOMS, SPCOMIOS, TRA, HE, TOEA, TOE, External platform)
- Digital analogs (AND, ANMD, ANMSD, ANED).

DISCLAIMER OF WARRANTIES.

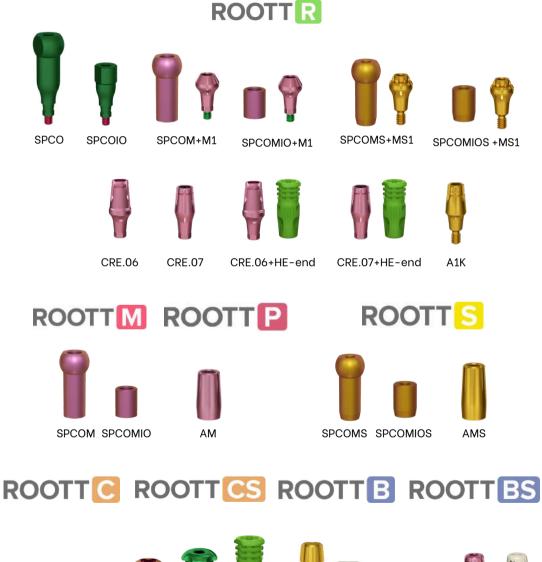
ALL SERVICES AND TRATE MATERIALS ARE PROVIDED "AS IS" AND "AS AVAILABLE" WITHOUT WARRANTY OF ANY KIND, AND TRATE HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHER. TRATE SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM THE COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

WITHOUT LIMITING THE FOREGOING, TRATE MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, TRATE MATERIALS, OR THE INFORMATION CONTAINED IN THE SERVICES WILL MEET THE USER'S OR ANY OTHER PERSON'S REQUIREMENTS, OPERATE WITHOUT INTERRUPTION, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, TIMELY, RELIABLE, RELEVANT, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE.

ROOTT does not define the maximum number of uses appropriate for reusable san posts. The useful life of these devices depends on a number of factors including the methods and of each uses and the handling between uses. Products should not be used if these defects are visible:

- Corrosion, rusting;
- Pitting, discoloration

For precise and quality scanning, you must take these factors into account:

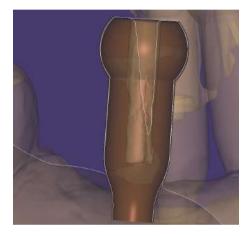

- Accurate scanning body geometry and position
- Surface and shape of the scanning body
- Number of frames made per second
- The ability of a scanning machine to calculate similar surfaces and join them together

Scan posts indicate the exact position of the implant in the jaw. During the scanning process, the information about the position is transferred into digital format.

ROOTT library has intraoral and extraoral scan posts. The difference between them is size and shape, which provide better performance for a particular workflow. The scheme below shows suitable scan posts for a specific type of implant. Working on with ROOTT R implants, scan posts (SPCOM, SPCOMIO, SPCOMIOS) can be used by assembling them with abutments M1 or MS1. Another advantage of the digital ROOTT library is that transfer, and telescopic abutments of ROOTT C, CS, B, BS implants also can be used as scan posts. These mentioned possibilities create broader applicability of the products.

External platform

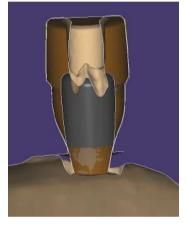
TCE, PCE TCES, PCES TCEXS, PCEXS


Precise detection of scan-bodies

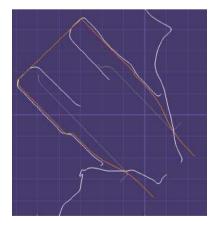
Orientation of scan data shall be chosen correctly, whereas it determines how precisely the program detects the scan body.

Reason for undetected scan body:

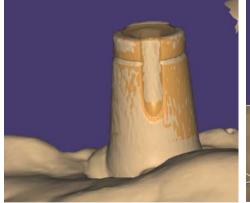
- Scan data is not precise;
- The scanner is not calibrated;
- Scan body is damaged or defected;
- Scan body is screwed incorrectly;
- Poor Intraoral scanner's scanning quality


Inaccurate detection results

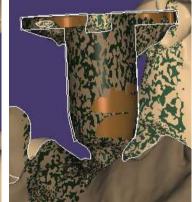
1.SPCO scan post. Good quality of scan and detection.



2.SPCO scan post. The medium level of scanning quality, perfect quality of detection.



3. Apt SPCOIO scan post.


Presices detection results

1.SPCOIO scan post. Damaged surfaces

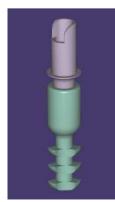
2. CRE.06 abutment and scan post. 3. TRA scan post, Inaccurate Damaged surfaces


scan.

Cement gap

An empty gap between a titanium base and an inner crown surface is called a cement gap. A dimension in microns (μm) indicates an offset from the titanium base.

Cement gap size results depend on the equipment. To get the best results, it is recommended:


- to find the most suitable cement gap option for your equipment;
- to check regularly the mill in the machine;
- to comply with the requirements of the equipment manufacturers;
- to check if the setting of the prosthesis and manufacturing equipment match (see picture below).

ROOTT digital library is created for 3 cement gap categories:

- Zirconia 0.025, 0.035, 0.050 μm;
- Plastic PEEK or PMMA 0. 075, 0.090, 0.110 μm.
- Metal 0.015, 0.025 µm.

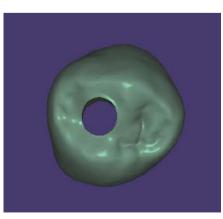
If there is a need to create from PEEK/PMMA with a narrow cement gap, choose Zro section. Metal cement gaps is adapted only for ROOTT M and S Multi Unit and External platform - Rot peek pmma/zro.

Screw channel

There are two options to create an aesthetical prosthesis:

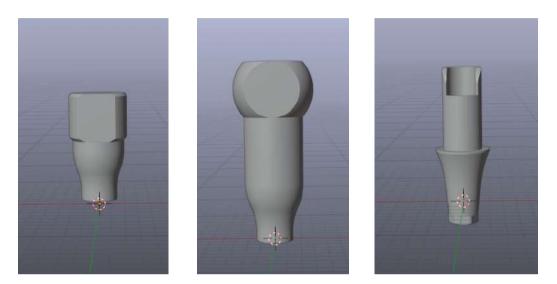
- Standard screw channel that matches the diameters of the screw and the screwdriver.
- Narrow screw channel that matches only the screwdriver. Choose this option if there is less occlusal surface, or a more aesthetical result is desired.

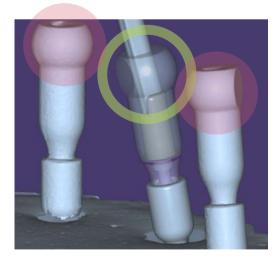
Screw channel sizes are available for ROOTT R, ROOTT M, ROOTT P, and ROOTT S.

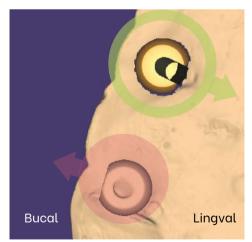

PCOM 35µm Screw channel standard

PCOMS 25µm Screw channel standard PCOMS 35µm Screw channel standard PCOMS 50µm Screw channel standard PCOMS 25µm Screw channel narrow PCOMS 35µm Screw channel narrow

PCOMS 50µm Screw channel narrow


PCOM 25µm Screw channel narrow





Angled screw channel position can be determined by scan post. The front plane of the scan post corresponds to the angle direction of the screw channel. Therefore, we recommend turning the scan post to lingval surface or patal surface direction before scanning in order to achieve the best results.

The front plane of scan posts

Correct scan post ROOTT R direction highlighted green, incorrect - red

Abutments

ROOTT R digital abutments are suitable for ordinary and complicated clinical situations. There is a wide range of options for multi-unit and single crown cases. In this instruction You could see all abutment which are included in to digital library.

CRE is a multi-functional part that is made of the same material as an implant and abutment. It is applicable as an abutment for immediate loading, open/close tray transfer, carrier for implant insertion, or healing abutment.

For multi-unit cases, use M1+PCOM or M1 Multi-Unit and for a single crown, choose from a PCO titanium base.

Pre-milled abutment PMAB is a customizable, one-piece abutment for a single crown metal or plastic PEEK framework.

ROOTT R abutment characteristics

- Angled access for tunnel from 0° to 20°;
- For bridges (PCOR, MS1, M1, CRE,) and single crowns (PCO1-PCO3, PMAB);
- Variety of gingiva part height PC01-PC03S;
- Variety of titanium bases height PCO and PCOS.

PMAB abutment characteristics

- Approved for use with a MEDENTIKA PreFace[®] Abutment Blank Holders;
- Provides unlimited possibilities to create high precision one-piece customized titanium abutment with an in house milling machine;
- Ideal adjustment for shape, emergence profile, esthetic properties are available for frequent situations.

Scan posts indicate the exact position of the implant in the jaw. During the scanning process, the information about the position is transferred into digital format. According to scan post position, height and direction, scan post is converted to abutment and sets the precise location of analogue. Get yourself acquainted with all types of ROOTT R scan posts, developed for the effective and precise workflow of the Odontology specialist (intraoral) and dental technicians (extraoral).

	SPCO	SPCOIO	M1		MS1	
R			SPCOM	SPCOMIO	SPCOMS	SPCOMIOS
Long body						
Short body						
Easily scannable						
Positionating						
Rotational						
Using with all ROOTT R libraries						
Using with ROOTT R_M1/MS1 libraries						

Same library PCO1/ PCOR- few differences

- Same gingiva and ti base height;
- PCOR without hexagon has been specifically designed for bridges to solve slight divergence between more than one implant. PCO1 was specifically created for single units to help prevent rotation and create stability for the screw.
- More usage options with combining these parts together.
- PC01-3 Titanium bases with flat engaging spot on the body of the base near the platform.

Enganging- PCO1, PCO2, PCO3 and others

More usage options with combining these parts together, options such as:

- Use PCO1
- When You making single crown or bridge.
- Use PCOR when You making more than one unit prosthesis.
- Combine PCO1 or any other PCOx detail together with PCOR and achieve burden-free prosthesis consturction fixation. If both interfaces had the hex in some cases it would be impossible to get the ti-base to seat on both implants.
- Another difference is the flat engaging spot on the body of the base near the platform.

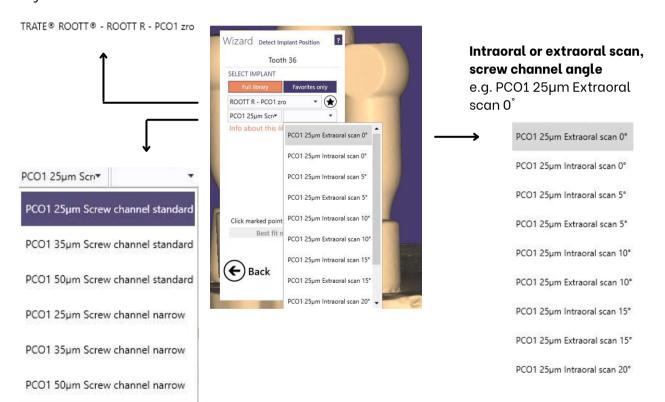
- 1. Library folders start with the Manufacturer's name- Trate.
- 2. ROOTT System consists of:
- ROOTT External platform libraries for ROOTT C/ ROOTTCS/ ROOTT B/ ROOTT BS.
- ROOTT R- two-piece implant system library
- ROOTT MP/S- Multi-unit implant system library
- ROOTT K Coming soon*

3. Abutment/ chronometric cap which is used. ROOTT R, ROOTT M/S/P- abutments, ROOTT C/CS/B/BS chronometric caps.

4. Prosthesis material (PEEK PMMA or Zirconium)

Trate ROOTT External platform AntRot peek ... Trate ROOTT External platform 3mm Trate_ROOTT_External_platform_4mm Trate_ROOTT_External_platform_5mm Trate_ROOTT_External_platform_7mm Trate_ROOTT_External_platform_AntRot_Metal Trate_ROOTT_External_platform_Rot_peek_pm... Trate_ROOTT_External_platform_Rot_zro Trate_ROOTT_External_platform_TCE0_PCE0_pe... Trate_ROOTT_External_platform_TCE0_PCE0_zro Trate_ROOTT_External_platform_TCE1_PCE1_pe... Trate_ROOTT_External_platform_TCE1_PCE1_zro Trate_ROOTT_External_platform_TCE2_PCE2_pe... Trate_ROOTT_External_platform_TCE2_PCE2_zro Trate_ROOTT_External_platform_TCE3_PCE3_pe... Trate_ROOTT_External_platform_TCE3_PCE3_zro Trate_ROOTT_External_platform_TCES0_PCES0_... Trate_ROOTT_External_platform_TCES0_PCES0_... Trate_ROOTT_External_platform_TCES1_PCES1_... Trate ROOTT_External_platform_TCES1_PCES1 ... Trate_ROOTT_External_platform_TCES2_PCES2_... Trate_ROOTT_External_platform_TCES2_PCES2_... Trate_ROOTT_External_platform_TCEXS1_PCEXS... Trate_ROOTT_External_platform_TCEXS1_PCEXS... Trate_ROOTT_External_platform_TCEXS2_PCEXS... Trate_ROOTT_External_platform_TCEXS2_PCEXS... Trate_ROOTT_M_MP_Multi_Unit Trate_ROOTT_M_PCOM_peek_pmma Trate_ROOTT_M_PCOM_Rotational_peek_pmma Trate_ROOTT_M_PCOM_Rotational_zro Trate_ROOTT_M_PCOM_zro Trate_ROOTT_R_CRE_peek_pmma Trate_ROOTT_R_CRE_zro Trate_ROOTT_R_CRE07_peek_pmma Trate ROOTT R CRE07 zro Trate_ROOTT_R_M1_Multi_Unit Trate_ROOTT_R_M1_PCOM_peek_pmma Trate ROOTT R M1_PCOM_zro Trate_ROOTT_R_M1A15_PCOM_peek_pmma Trate_ROOTT_R_M1A45_PCOM_peek_pmma Trate_ROOTT_R_MS1_Multi_Unit Trate_ROOTT_R_MS1_PCOMS_peek_pmma Trate_ROOTT_R_MS1_PCOMS_zro Trate_ROOTT_R_PCO_peek_pmma Trate_ROOTT_R_PCO_zro Trate_ROOTT_R_PCO1_peek_pmma Trate_ROOTT_R_PCO1_zro Trate_ROOTT_R_PCO1S_peek_pmma Trate_ROOTT_R_PCO1S_zro Trate_ROOTT_R_PCO2_peek_pmma Trate_ROOTT_R_PCO2_zro Trate_ROOTT_R_PCO2S_peek_pmma Trate_ROOTT_R_PCO2S_zro Trate_ROOTT_R_PCO3_peek_pmma Trate ROOTT R PCO3 zro Trate_ROOTT_R_PCO3S_peek_pmma Trate_ROOTT_R_PCO3S_zro Trate_ROOTT_R_PMAB Trate_ROOTT_S_PCOMS_peek_pmma Trate_ROOTT_S_Multi_Unit Trate_ROOTT_S_PCOMS_Rotational_peek_pmma Trate_ROOTT_S_PCOMS_Rotational_zro Trate_ROOTT_S_PCOMS_zro

Instruction for Exocad using ROOTT R


Extraoral scan using PCO, PCOS

Step 1. Upload .slt file to Exocad software. Extraoral scan posts shall be visible.

Step 2. Choose abutment that will replace scan post.

Implant + abutment, material e.g. ROOTT R + PCO1 zro

Cement gap size in microns, screw channel e.g. PCO1 25µm screw channel standard.

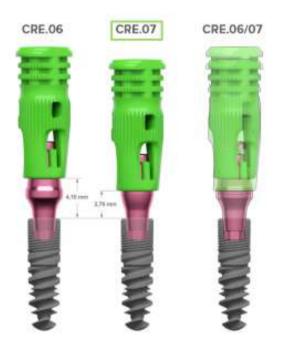
CRE.07

Short instruction on new version of CRE

It is important to know which version of CRE you are using, as they come with different measures. Mistakenly identified CRE parts can lead to inaccuracies and confusion, which can directly affect the work of implantologist and dental technicians.

The main disparity between CRE.07 and CRE.06 – height is of utmost importance during the processes of scanning while using CRE as a scanning body. Our digital library has individual options for each CRE and can be identified together with HE-END parts.

The main differences



CRE.07 is more streamlined, shorter and slightly narrower

CRE identification inside the blister

It is easy to identify the version of CRE when it is assembled with HE and the implant:

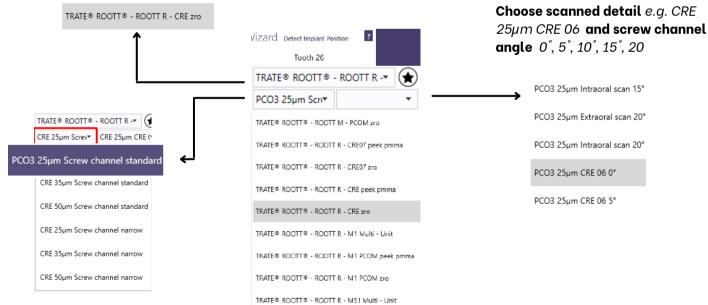
CRE.06 height in this stand – 4,10mm CRE.07 height in this stand – 2,76mm

CRE identification after insertion



CRE.06 height from the implant level is – 8,02mm CRE.07 height from the implant level is – 6,68mm

Instruction for Exocad using CRE 06


Direct scan using CRE.06 USE CRE scan post with all digital ROOTT R digital ti base and abutments.

Step 1. Upload .slt file to Exocad software. Extraoral scan posts shall be visible.

Step 2. Choose abutment that will replace scan post.

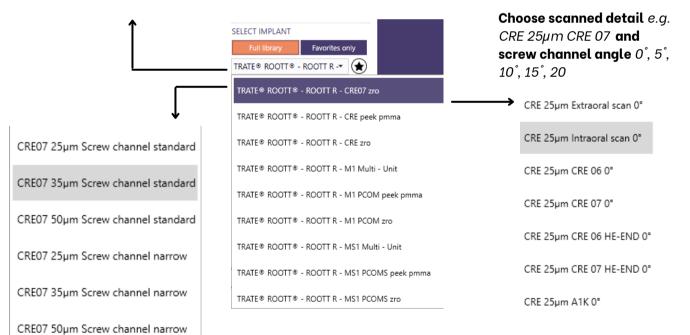
Implant + abutment, material e.g. ROOTT R + CRE zro

Abutment, Cement gap size in microns, screw channel(standard/narrow)

e.g. PCO1 25µm screw channel standard.

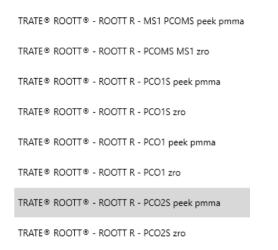
Instruction for Exocad using CRE 07

Direct scan using CRE.07 USE CRE scan post with all digital ROOTT R digital ti base and abutments.


Step 1. Upload .slt file to Exocad software. Extraoral scan posts shall be visible.

Step 2. Choose abutment that will replace scan post.

Implant + abutment, material e.g. ROOTT R + PCO1 zro

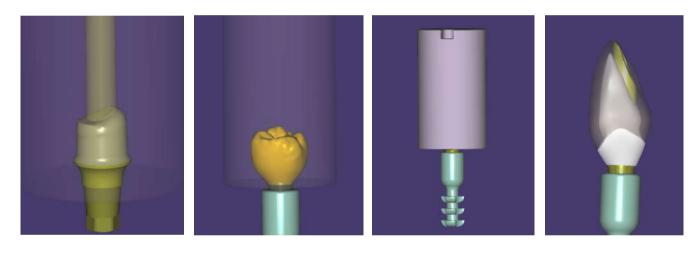

TRATE® ROOTT® - ROOTT R - PCO1 zro

Cement gap size in microns, screw channel e.g. PCO1 25µm screw channel standard.

Step 3. Mark an area to detect Scan post position.

Material - PEEK, PMMA or ZrO


Necessary products to make a prosthesis



Extraoral scan using PMAB

Step 1. Upload .stl file to Exocad software. Extraoral scan post SPCO shall be visible (p. 14, Step 1.)
Step 2. Choose Pre-milled abutment PMAB that will replace scan post SPCO.

Step 3. Create a framework and mill the abutment.

1.2.3.4.1. Individual abutment2. Anatomical crown3. PMAB Pre-milled abutment with analog AN4. Anatomical framework and analog

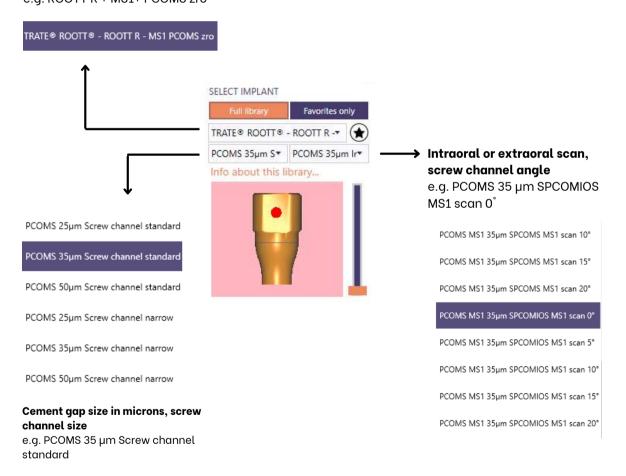
Necessary products to make a prosthesis

Abutment PMAB

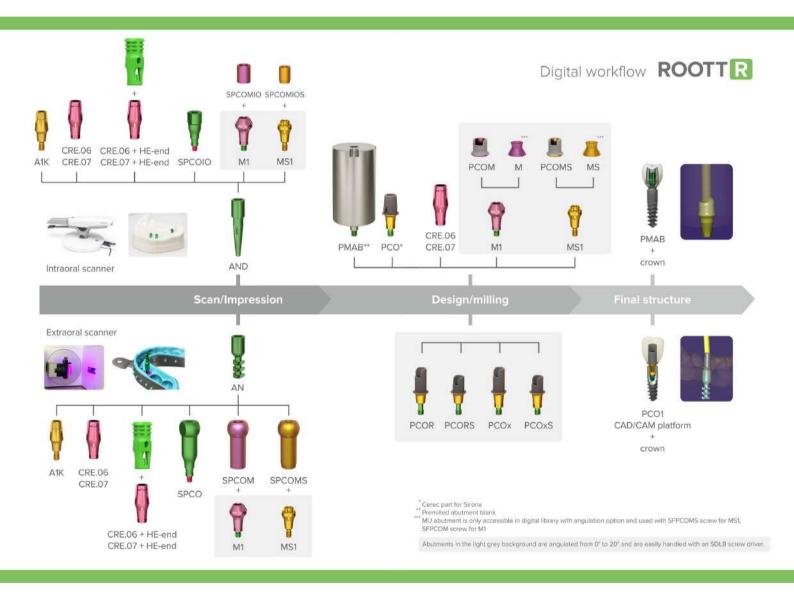
S8/SL8

Screwdriver SDLB

Crown+ custom abutment


Intraoral scan

Step 1. Upload scanned model to Exocad software. Intraoral scan post shall be visible.


Step 2. Choose abutment that will replace scan post (see p. 11, Step 2.).

Implant + abutment, material e.g. ROOTT R + MS1+ PCOMS zro

ROOTT R Digital workflow

ROOTT M Scan posts correspond with multiunit platform connections. Scan posts indicate the exact position of the implant in the jaw. During the scanning process, the information about the position is transferred into digital format. According to Scan post position, height and direction, Scan-post is converted to abutment and sets the precise location of analogue. Get yourself acquainted with all types of ROOTT M Scan posts, which are developed for the precise manufacturing of bridge prosthesis.

	SPCOM	SPCOMIO	SPCOMS	SPCOMIOS
Extraoral scanning				
Intraoral scanning				
Reusable				
Multi-units				
Easily scannable				
Long body				
Short body				

R ROOTT

Abutments

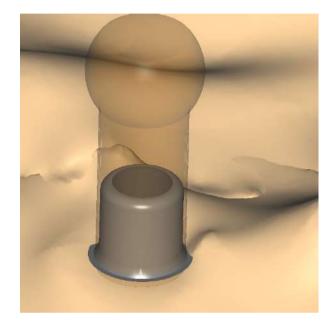
ROOTT M and ROOTT P digital library have two options for abutments. There are an abutment PCOM and a digital abutment MU that can be used directly with implant, the famous possibility to use Trate_ROOTT M P_Multi Unit (MU connection) is for metal frameworks .

ROOTT M ROOTT P abutment characteristics

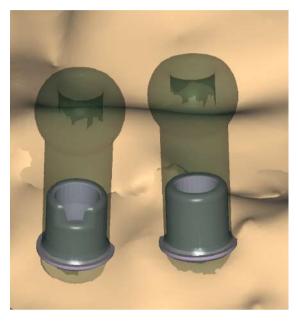
- Angled access for tunnel from 0° to 20°;
- Only for bridges.
- Trate_ ROOTT M P_Multi unit it's for direct connection
- Trate_ROOTT M_PCOM_ it's for cement or screw retained connections.

TRATE® ROOTT® - ROOTT M ▼ 😧
TRATE⊗ ROOTT© - ROOTT M P - Multi - Unit
TRATE® ROOTT® - ROOTT M - PCOM peek pmma
TRATE® ROOTT® - ROOTT M - PCOM zro
TRATE® ROOTT® - ROOTT R - CRE peek pmma
TRATE® ROOTT® - ROOTT R - CRE zro
TRATE® ROOTT® - ROOTT R - M1 PCOM peek pmma
TRATE® ROOTT® - ROOTT R - M1 PCOM peek pmma
TRATE® ROOTT® - ROOTT R - MS1 PCOMS peek pmma
TRATE® ROOTT® - ROOTT R - PCOMS MS1 zro

TRATE® ROOTT® - ROOTT M - PCOM zro


TRATE® ROOTT® - ROOTT R - CRE peek pmma
TRATE® ROOTT® - ROOTT R - CRE zro
TRATE® ROOTT® - ROOTT R - M1 Multi - Unit
TRATE® ROOTT® - ROOTT R - M1 PCOM peek pmma
TRATE® ROOTT® - ROOTT R - M1 PCOM zro
TRATE® ROOTT® - ROOTT R - MS1 Multi - Unit
TRATE® ROOTT® - ROOTT R - MS1 PCOMS peek pmma
TRATE® ROOTT® - ROOTT R - MS1 PCOMS zro

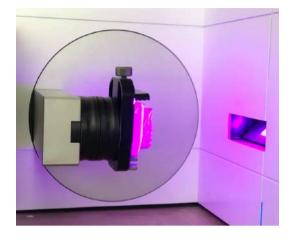
ROOTT ROOTT P PCOM abutmentMaterial - peek, pmma or zro

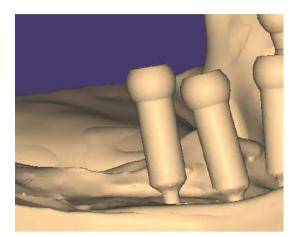

PCOM/ PCOMS options

TRATE® ROOTT® - ROOTT M - PCOM Rotational peek pmma

Rotational connection geometry. Multi unit connection, between abutment and prosthesis.

TRATE® ROOTT® - ROOTT M - PCOM peek pmma




Connection geometry with rotation lock. Multi unit connection, between implant and abutment.

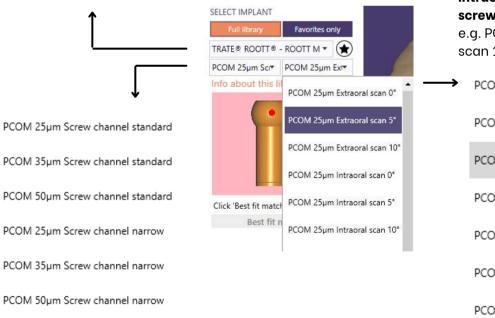
Instruction for Exocad using ROOTT M ROOTT P

Extraoral scan

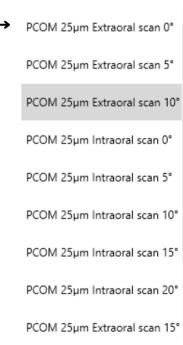
Step 1. Scanned model upload to Exocad software. Extraoral scan posts shall be visible.

Step 2. Choose abutment that will replace scan post.

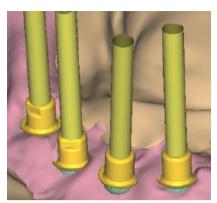
Implant + abutment, material e.g. ROOTT M + PCOM zro

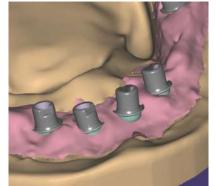

TRATE® ROOTT® - ROOTT M - PCOM zro

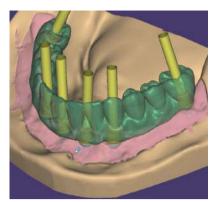
Cement gap size in microns,


(Suitable for screw driver and

screw channel size e.g. PCOM 25 µm screw channel standard


screw)


Intraoral or extraoral scan, screw channel angle e.g. PCOM 25 µm Extraoral scan 10°



Standard screw channels

Cement gap 25µm

Prosthesis in Exocad

Digital model with analog ANMD

Necessary products to make a prosthesis

Ti base PCOM

Screw SFPCOM

Screwdriver SDLB

Created by Pesterev Evgeniy

Digital MU abutment

Screw SFPCOM

Screwdriver SDLB

Created by Sokratis Agapiou

ROOTT S Scan-posts corresponds with a small multiunit platform connection. Scan-posts indicate the exact position of the implant in the jaw. During the scanning process, the information about the position is transferred into digital format. According to Scan-post position, height and direction, Scan-post is converted to abutment and sets the precise location of analogue. Get yourself acquainted with all types of ROOTT S Scan-posts, which are developed for the precise manufacturing of bridge prostheses.

*screw-retained restrations with a wide and secure fixation screw

SPCOMS scan post characteristic

- Extraoral scanning
- The long body allows comfortable usage and precise results of laboratory workflow
- Easily scannable
- Reusable

SPCOMIOS scan post characteristic

- Intraoral scanning
- The short body allows comfortable usage and precise results of implantologists' workflow
- Easily scannable
- Reusable

Abutments

ROOTT S digital library has two option for abutments. There are an abutment PCOMS and a digital abutment that can be used directly without a physical one.

ROOTT S abutments characteristics

- Angled access for tunnel from 0° to 20°;
- Only for bridges.

TRATE® ROOTT® - ROOTT S --- 😭

TRATE® ROOTT® - ROOTT R - PCOR zro

TRATE® ROOTT® - ROOTT R - PCO peek pmma

TRATE® ROOTT® - ROOTT R - PCO zro

TRATE[®] ROOTT[®] - ROOTT R - PMAB

TRATE® ROOTT® - ROOTT R - MS1 Multi - Unit

TRATE® ROOTT® - ROOTT S - Multi - Unit

TRATE® ROOTT® - ROOTT S - MS Bridge

TRATE[®] ROOTT[®] - ROOTT S - PCOMS zro

ROOTTS

Direct connection to implant, only in Digital library Material - peek, pmma or zro

TRATE® ROOTT® - ROOTT R - PCO zro

TRATE® ROOTT® - ROOTT R - PMAB

TRATE® ROOTT® - ROOTT S - Multi - Unit

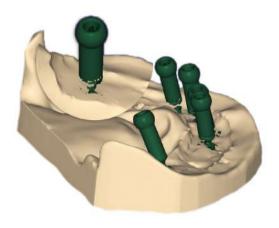
TRATE® ROOTT® - ROOTT S - PCOMS peek pmma

TRATE® ROOTT® - ROOTT S - PCOMS Rotational peek pmma

TRATE® ROOTT® - ROOTT S - PCOMS zro

TRATE® ROOTT® - ROOTT S - PCOMS zro

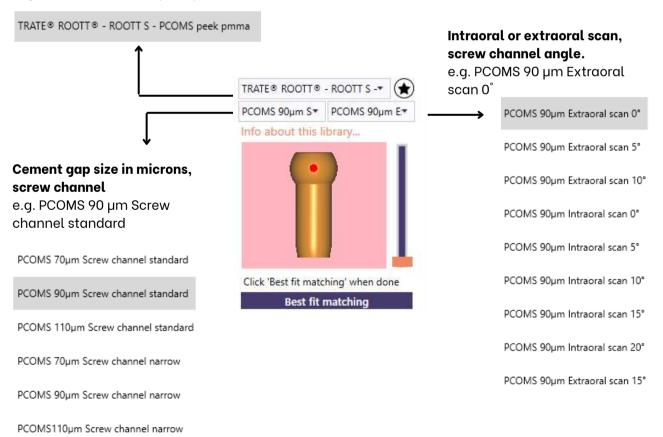
ROOTT S Material - peek, pmma or zro

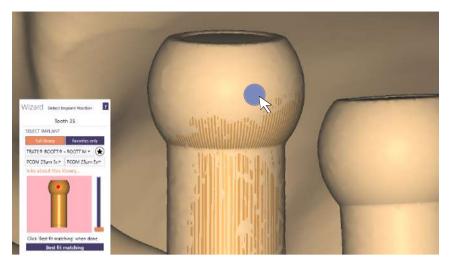


ROOTT S Scan posts

Instruction for Exocad using ROOTT S

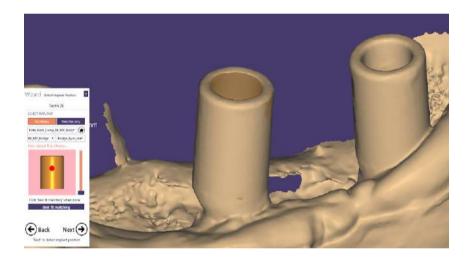
Extraoral scan


Step 1. Scanned model upload to Exocad software. Extraoral scan posts shall be visible.


Step 2. Choose abutment that will replace scan post.

Implant + abutment, material

e.g. ROOTT S + PCOMS peek pmma



Step 4. Mark an area to detect Scan post position.

Intraoral scan

Step 1. Upload scanned model to Exocad software. Intraoral scan post shall be visible.

Step 2. Choose abutment that will replace scan post (see p. 7, Step 2.).

Necessary products to make a prosthesis

Digital MU abutment

SFPCOMS

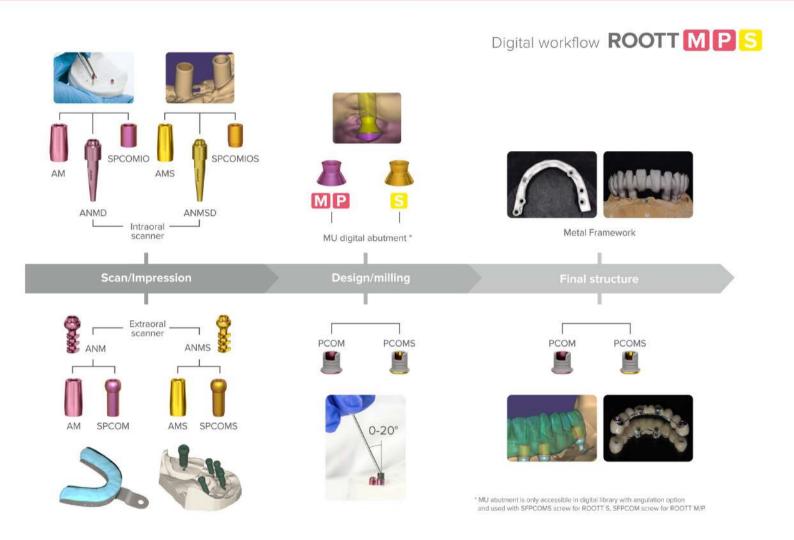
Screw

Screwdriver SDLB

Created by Igor Naumcheski

PCOM

Ti base


Screw SFPCOMS

Digital view

What to use. All ROOTT M/S/P implants on six

Scanable superstructures

ROOTT C, CS, B, BS Scan-post give a wide range of options. There are 45 different ways to scan with intraoral and extraoral scanners - choose from TRA, HE TOEA, TOE, TOES, telescopic abutments or External platform varieties. Scan-posts have a few height options that open possibilities for different clinical cases and patients mouth.

Transfers can be used as scan-posts that make workflow more precise and effective. Scan-posts indicate the exact position and the depth of the screwed implant in the jaw. During the scanning process, the information about the position is transferred into digital format. According to the Scan-post position, Scan-post is converted to telescopic abutment and sets the precise location of analogue. Get yourself acquainted with one-piece abutments which are suitable even for complex clinical cases.

Abutments

ROOTT C, CS, B, BS abutments are metal and plastic connectors between an implant and a crown. They do not require a screw - making it the best solution for time-saving and comfort. Both TCE and PCE are the same size; however, the material is different - titanium or peek. Plastic peek gives more amortization and cushioning in the tooth, making the bite more comfortable and reducing fracture risk.

TCES0 0 mm

TCES1 1 mm TCEXS1 1 mm TCEXS2 2 mm

Two ways to make direct prosthesis connection

For Single crowns

For Bridges and arch

TRATE® ROOTT® External platform - AntRot peek pmma

TRATE® ROOTT® External platform - AntRot_zro

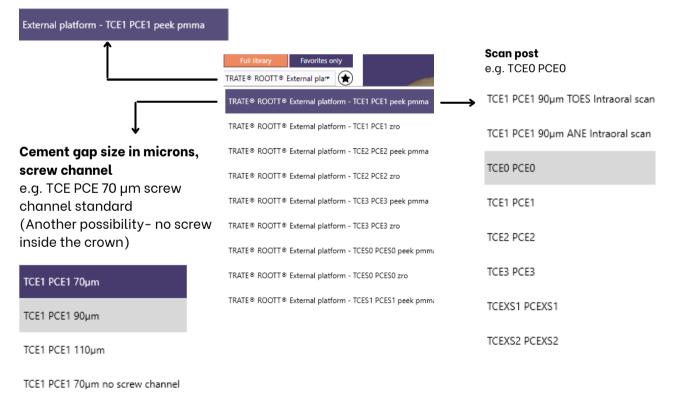
In this way prosthesis milling with retention inside, which results- minimal prosthesis movement in milled zoned using an external platform. In this way, prosthesis milling is without any retention, resulting rotational prosthesis movement in milled zoned using an external platform.

TRATE® ROOTT® External platform - Rot peek pmma

TRATE® ROOTT® External platform - Rot zro

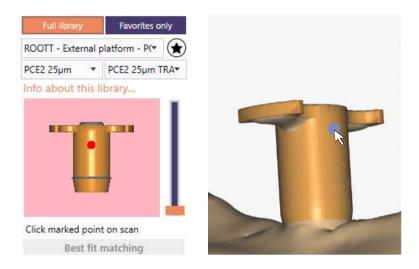
Instruction for Exocad using ROOTT C CS B BS

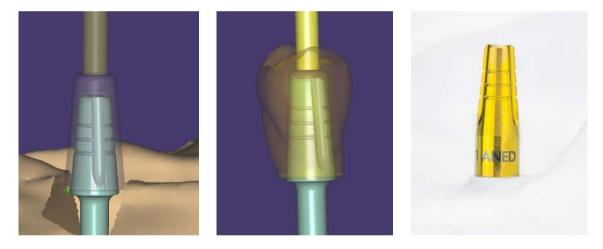
Extraoral scan


Step 1. Scanned model upload to Exocad software. Extraoral scan posts shall be visible.

Step 2. Choose abutment that will replace scan post.

Abutment, material


e.g. External platform TCE1 PCE1 peek pmma


TCE1 PCE1 90µm no screw channel

TCE1 PCE1 110µm no screw channel

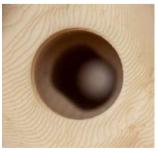
Step 3. Mark an area to detect Scan post position. Detected scan post shall change a color.

Step 4. Create a crown's anatomy, print a model and insert a digital analog in a digital model.


External platform with transparent caps.

External platform with cap's gap and

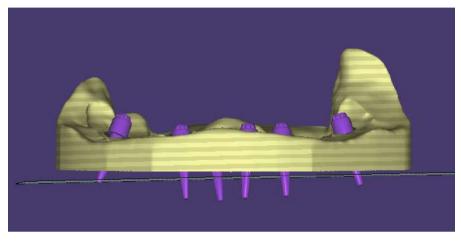
Digital analogues indicate the exact position of the implant in the jaw. Therefore, if the scan post is not screwed properly, it could lead to an inaccurate position of digital analogue. Digital analogues could be used only with printed models.

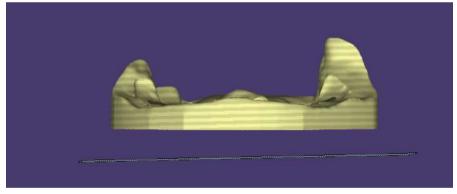


Digital analog AND inside the model

Analog shows the accurate implants position

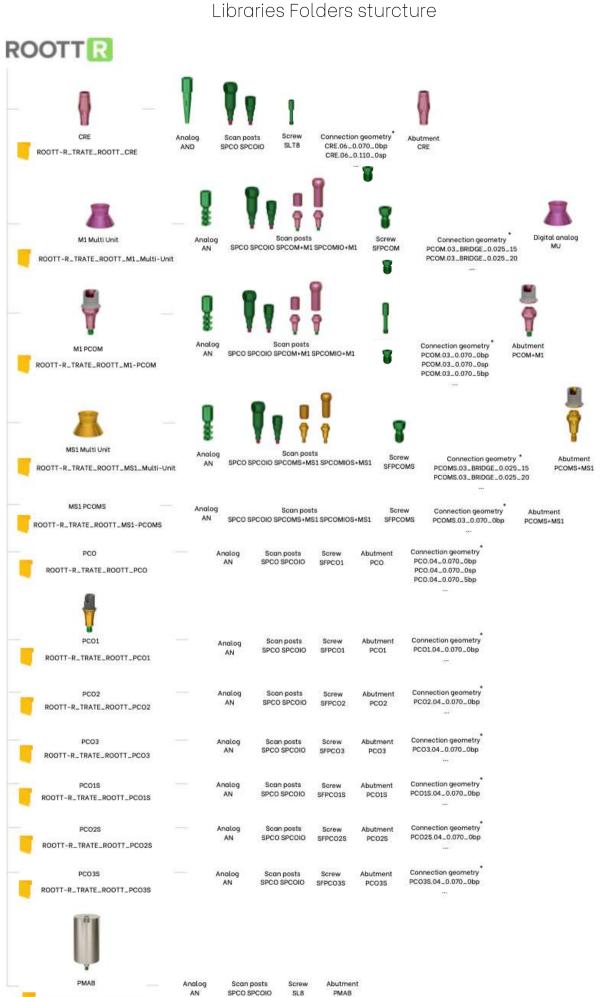
Exocad let's change gap between model and digital analog


Analog ANED with empty space in model


Model Creator

An accurate printed model is needed to make a precise prosthesis. Therefore, it is crucial to know Model Creator software.

Note 1. Lift up a model in a way that analogue fits in it. If analogues are visible, the jaw model should be higher. If analogs are invisible, model is in the right position.


Incorrect- model is too low

Correct- good model position

PMAB milling opportunities

MILLING Machine		LINK TO HOLDER	
VHF	Available with library	Exocad 3Shape- Approved	
Roland DWX-42W	Available	Medentika Preface Adapter	
ROLAND DWX-50	Available	Medentika Preface Adapter	
IMES-ICORE CORITEC 2501	Available	Loading Loading Preface Adapter	
Zfx	Available		
LabTec	Available		
Dental direct S-Tec, K-tec	Available	loading	
Arum 400	Impossible	loading	

ROOTTM ROOTTP

ROOTT ROOTT ROOTT ROOTT ROOTT

				80	
	Δ		1000000	1	
	TCE0 PCE0	Analog	Scanable superstructures		n geometry * Abutment
-		ANE	HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm TCE0 TCE1 TCE2 TCE3 TCES0 TCES1 TCES2 TCEXS1 TCEXS2	STEX.3	1_0.070 TCE0 1_0.090
	ROOTT-R_TRATE_ROOTT_TCE0-PCE0			80	
	TCE1 PCE1	Analog	Scanable superstructures	Connection geometry *	Abutmant
	ROOTT-R_TRATE_ROOTT_TCE1-PCE1	ANE	HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm TCE0 TCE1 TCE2 TCEXS1 TCEXS2	TCE1.01_0.070 TCE1.01_0.090	Abutment TCE1
	TCE2 PCE2	Analog	Scanable superstructures	Connection geometry	Abutment
	ROOTT-R_TRATE_ROOTT_TCE2-PCE2	ANE	HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm TCE0 TCE1 TCE2 TCEXS1 TCEXS2	TCE2.01_0.070 TCE2.01_0.090	TCE2
1					
_	TCE3 PCE3	Analog ANE	Scanable superstructures HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm	Connection geometry TCE3.01_0.070	Abutment TCE3
1	ROOTT-R_TRATE_ROOTT_TCE3-PCE3		TCE0 TCE1 TCE2 TCEXS1 TCEXS2	TCE3.01_0.090	
	TCES0 PCES0	Analog ANE	Scanable superstructures HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm	Connection geometry	Abutment
	ROOTT-R_TRATE_ROOTT_TCES0-PCES0	AINE	TCE0 TCE1 TCE2 TCEXS1 TCEXS2	TCES0.01_0.070 TCES0.01_0.090	TCESO
-					
	TCES1 PCES1	Analog	Scanable superstructures	Connection geometry	Abutment
-		ANE	HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm TCED TCE1 TCE2 TCEXS1 TCEXS2	TCES1.01_0.070 TCES1.01_0.090	TCES1
	ROOTT-R_TRATE_ROOTT_TCES1-PCES1			1CESI.01_0.090	
-	TCES2 PCES2	Analog	Scanable superstructures	Connection geometry	Abutment
	ROOTT-R_TRATE_ROOTT_TCES2-PCES2	ANE	HE-END SPCOIDE TOE TOEA TOES TRA. External platform 7, 5, 4, 3 mm TCE0 TCE1 TCE2 TCEXS1 TCEXS2	TCES2.01_0.070 TCES2.01_0.090	TCES2
				(see)	
	TCESX1 PCEXS1	Analog	Scanable superstructures		Abutment
4	ROOTT-R_TRATE_ROOTT_TCEXS1-PCEXS1	ANE	HE-END SPCOIDE TOE TOEA TOES TRA External platform 7, 5, 4, 3 mm TCED TCE1 TCE2 TCE3 TCES0 TCES1 TCES2 TCEXS1 TCEXS2	TCEXS1.01_0.070 TCEXS1.01_0.090	TCEXS1
	TCESX2 PCEXS2	Analog	Scanable superstructures	* Connection geometry	Abutment
٩	ROOTT-R_TRATE_ROOTT_TCEXS2-PCEXS2	ANE	HE-END SPCOIDE TOE TOEA TOES TRA. External platform 7, 5, 4, 3 mm TCE0 TCE1 TCE2 TCE3 TCES0 TCES1 TCES2 TCEXS1 TCEXS2	TCEXS2.01_0.070 TCEXS2.01_0.090	TCEXS2